Multi-scale, multi-resolution brain cancer modeling

نویسندگان

  • Le Zhang
  • L. Leon Chen
  • Thomas S. Deisboeck
چکیده

In advancing discrete-based computational cancer models towards clinical applications, one faces the dilemma of how to deal with an ever growing amount of biomedical data that ought to be incorporated eventually in one form or another. Model scalability becomes of paramount interest. In an effort to start addressing this critical issue, here, we present a novel multi-scale and multi-resolution agent-based in silico glioma model. While 'multi-scale' refers to employing an epidermal growth factor receptor (EGFR)-driven molecular network to process cellular phenotypic decisions within the micro-macroscopic environment, 'multi-resolution' is achieved through algorithms that classify cells to either active or inactive spatial clusters, which determine the resolution they are simulated at. The aim is to assign computational resources where and when they matter most for maintaining or improving the predictive power of the algorithm, onto specific tumor areas and at particular times. Using a previously described 2D brain tumor model, we have developed four different computational methods for achieving the multi-resolution scheme, three of which are designed to dynamically train on the high-resolution simulation that serves as control. To quantify the algorithms' performance, we rank them by weighing the distinct computational time savings of the simulation runs versus the methods' ability to accurately reproduce the high-resolution results of the control. Finally, to demonstrate the flexibility of the underlying concept, we show the added value of combining the two highest-ranked methods. The main finding of this work is that by pursuing a multi-resolution approach, one can reduce the computation time of a discrete-based model substantially while still maintaining a comparably high predictive power. This hints at even more computational savings in the more realistic 3D setting over time, and thus appears to outline a possible path to achieve scalability for the all-important clinical translation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of Multi-Scale Consistent Brain Networks: Methods and Applications

Mapping human brain networks provides a basis for studying brain function and dysfunction, and thus has gained significant interest in recent years. However, modeling human brain networks still faces several challenges including constructing networks at multiple spatial scales and finding common corresponding networks across individuals. As a consequence, many previous methods were designed for...

متن کامل

A new 2D block ordering system for wavelet-based multi-resolution up-scaling

A complete and accurate analysis of the complex spatial structure of heterogeneous hydrocarbon reservoirs requires detailed geological models, i.e. fine resolution models. Due to the high computational cost of simulating such models, single resolution up-scaling techniques are commonly used to reduce the volume of the simulated models at the expense of losing the precision. Several multi-scale ...

متن کامل

Multi-Scale Computational Models for Electrical Brain Stimulation

Electrical brain stimulation (EBS) is an appealing method to treat neurological disorders. To achieve optimal stimulation effects and a better understanding of the underlying brain mechanisms, neuroscientists have proposed computational modeling studies for a decade. Recently, multi-scale models that combine a volume conductor head model and multi-compartmental models of cortical neurons have b...

متن کامل

Accelerate numerical diffusion solver of 2D multi- scale and multi-resolution agent-based brain cancer model by employing graphics processing unit technology

Diffusion model is increasingly employed to simulate diffusion of biological compounds including nutrient, oxygen and chemoattractants in the agent-based model (ABM). However, it takes long compute time to employ conventional numerical methods such as alternating direction implicit (ADI) method to approximate the exact solution of the diffusion processed by sequential computing algorithm. To ov...

متن کامل

Tuneable resolution as a systems biology approach for multi-scale, multi-compartment computational models

The use of multi-scale mathematical and computational models to study complex biological processes is becoming increasingly productive. Multi-scale models span a range of spatial and/or temporal scales and can encompass multi-compartment (e.g., multi-organ) models. Modeling advances are enabling virtual experiments to explore and answer questions that are problematic to address in the wet-lab. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mathematics and computers in simulation

دوره 79 7  شماره 

صفحات  -

تاریخ انتشار 2009